Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mar Life Sci Technol ; 6(1): 68-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433967

RESUMO

Mesopelagic fish (meso-fish) are central species within the Southern Ocean (SO). However, their ecosystem role and adaptive capacity to climate change are rarely integrated into protected areas assessments. This is a pity given their importance as crucial prey and predators in food webs, coupled with the impacts of climate change. Here, we estimate the habitat distribution of nine meso-fish using an ensemble model approach (MAXENT, random forest, and boosted regression tree). Four climate model simulations were used to project their distribution under two representative concentration pathways (RCP4.5 and RCP8.5) for short-term (2006-2055) and long-term (2050-2099) periods. In addition, we assess the ecological representativeness of protected areas under climate change scenarios using meso-fish as indicator species. Our models show that all species shift poleward in the future. Lanternfishes (family Myctophidae) are predicted to migrate poleward more than other families (Paralepididae, Nototheniidae, Bathylagidae, and Gonostomatidae). In comparison, lanternfishes were projected to increase habitat area in the eastern SO but lose area in the western SO; the opposite was projected for species in other families. Important areas (IAs) of meso-fish are mainly distributed near the Antarctic Peninsula and East Antarctica. Negotiated protected area cover 23% of IAs at present and 38% of IAs in the future (RCP8.5, long-term future). Many IAs of meso-fish still need to be included in protected areas, such as the Prydz Bay and the seas around the Antarctic Peninsula. Our results provide a framework for evaluating protected areas incorporating climate change adaptation strategies for protected areas management. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00188-9.

2.
Proc Natl Acad Sci U S A ; 121(14): e2319663121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547059

RESUMO

The structure of dislocation cores, the fundamental knowledge on crystal plasticity, remains largely unexplored in covalent crystals. Here, we conducted atomically resolved characterizations of dislocation core structures in a plastically deformed diamond anvil cell tip that was unloaded from an exceptionally high pressure of 360 GPa. Our observations unveiled a series of nonequilibrium dislocation cores that deviate from the commonly accepted "five-seven-membered ring" dislocation core model found in FCC-structured covalent crystals. The nonequilibrium dislocation cores were generated through a process known as "mechanical quenching," analogous to the quenching process where a high-energy state is rapidly frozen. The density functional theory-based molecular dynamic simulations reveal that the phenomenon of mechanical quenching in diamond arises from the challenging relaxation of the nonequilibrium configuration, necessitating a large critical strain of 25% that is difficult to maintain. Further electronic-scale analysis suggested that such large critical strain is spent on the excitation of valance electrons for bond breaking and rebonding during relaxation. These findings establish a foundation for the plasticity theory of covalent materials and provide insights into the design of electrical and luminescent properties in diamond, which are intimately linked to the dislocation core structure.

3.
Nature ; 626(8000): 779-784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383626

RESUMO

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

4.
Nature ; 626(7997): 79-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172640

RESUMO

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

5.
Science ; 382(6673): 882-883, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995246

RESUMO

A phase diagram-based screen identifies optimal interface materials for devices that convert heat into electricity.

6.
Phys Chem Chem Phys ; 25(40): 27373-27379, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791950

RESUMO

Three novel hexagonal Si-C-N structures, namely SiC3N3, SiC7N6, and SiC13N14, were constructed on the basis of the α-Si3N4 crystal structure. The stability of the three structures is demonstrated by analyzing their elastic constants and phonon dispersion spectra and by calculating their formation energies. The calculated band structures and partial densities of states suggest that the SiC3N3 and SiC7N6 structures possess hole conductivity. The electron orbital analyses indicate that the SiC3N3 and SiC7N6 crystals possess three-dimensional and one-dimensional conductivity, respectively. SiC13N14 is a semiconductor with a wide bandgap of 4.39 eV. Based on two different hardness models and indentation shear stress calculations, the Vickers hardness values of SiC3N3, SiC7N6, and SiC13N14 are estimated to be 28.04/28.45/16.18 GPa, 31.17/34.19/20.24 GPa, and 40.60/41.59/36.40 GPa. This result indicates that SiC3N3 and SiC7N6 are conductive hard materials while SiC13N14 is a quasi superhard material.

7.
Nat Mater ; 22(11): 1317-1323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735525

RESUMO

Materials that possess the ability to self-heal cracks at room temperature, akin to living organisms, are highly sought after. However, achieving crack self-healing in inorganic materials, particularly with covalent bonds, presents a great challenge and often necessitates high temperatures and considerable atomic diffusion. Here we conducted a quantitative evaluation of the room-temperature self-healing behaviour of a fractured nanotwinned diamond composite, revealing that the self-healing properties of the composite stem from both the formation of nanoscale diamond osteoblasts comprising sp2- and sp3-hybridized carbon atoms at the fractured surfaces, and the atomic interaction transition from repulsion to attraction when the two fractured surfaces come into close proximity. The self-healing process resulted in a remarkable recovery of approximately 34% in tensile strength for the nanotwinned diamond composite. This discovery sheds light on the self-healing capability of nanostructured diamond, offering valuable insights for future research endeavours aimed at enhancing the toughness and durability of brittle ceramic materials.

8.
Mar Life Sci Technol ; 5(1): 75-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37077289

RESUMO

The complex life histories of demersal fishes are artificially separated into multiple stages along with changes in morphology and habitat. It is worth exploring whether the phenotypes expressed earlier and later during the life cycle are related or decoupled. The life stages of first year Pacific cod (Gadus macrocephalus) were tracked over different hatch years and regions to test whether the early life history had a long-lasting effect on subsequent growth. We further explored the contribution of growth in the early and subsequent life history stages to body size at the end of each stage. In addition to the accessory growth centre and the first annual ring, the other two checks on the otolith possibly related to settlement and entering deeper waters were identified in 75 Pacific cod individuals. The direct and indirect relationships among the life history stages was interpreted based on path analysis. The results showed that growth prior to the formation of the accessory growth centre had a significant effect on the absolute growth of the fish before and after settlement and migration to deep water. However, there was no or moderate evidence that early growth affected the body size at each stage, which was mainly regulated by growth during the stage. This study supports the lasting effect of early growth and clarifies that it affects size mainly by indirectly regulating staged growth. Quantifying the phenotype relationships and identifying the internal mechanisms form the basis for assessing population dynamics and understanding the processes behind the changes. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00145-y.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36892868

RESUMO

The optimal carrier concentration of thermoelectric materials increases with increasing temperature. However, conventional aliovalent doping usually provides an approximately constant carrier concentration over the whole temperature range, which can only match the optimal carrier concentration in a narrow temperature range. In this work, n-type indium and aluminum codoped PbTe were prepared with high-pressure synthesis, followed by spark plasma sintering. While Al doping can provide a roughly constant carrier concentration with varying temperatures, In doping can trap electrons at low temperatures and release them at high temperatures, thus optimizing the carrier concentration over a broad temperature range. As a result, both electrical transport properties and thermal conductivity are optimized, and a significantly enhanced thermoelectric performance is achieved in InxAl0.02Pb0.98Te. The optimal In0.008Al0.02Pb0.98Te shows a peak ZT of 1.3 and an average ZT of 1, with a decent conversion efficiency of 14%. Current work demonstrates that optimizing carrier concentration with varying temperatures is effective to enhance the thermoelectric performance of n-type PbTe.

10.
J Phys Chem Lett ; 14(5): 1310-1317, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36724202

RESUMO

Boron-rich compounds have attracted much attention due to their interesting structures and excellent properties. Here, we performed an extensive study on the different B-P stoichiometries under pressure by combining a particle swarm optimization method with first-principles calculations. At 1 atm, BP and B6P are thermodynamically stable, while other stoichiometries are metastable. Under pressure, BP and B6P remain stable relative to constituent pure solids up to 80 GPa, while other stoichiometries become unstable at relatively low pressures. A new Cmca B6P is predicted with the lowest energy at 1 atm and shows higher shear strain than the R3̅m structure, which is known to be more resistant to brittle fracture than B4C. Moreover, the predicted Pm B8P is a magnetic semiconductor with a magnetic moment of 1 µB. All these boron-rich phosphides are hard materials. The present results enrich the B-P phase diagram and promote extensive research on their excellent properties.

11.
Adv Mater ; 35(50): e2204375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36099908

RESUMO

The observation of fracture behaviors in perfect and twinned B4 C crystals via in situ transmission electron microscopy (TEM) mechanical testing is reported. The crystal structure of the synthesized B4 C, composed of B11 C icosahedra connected by boron-deficient C-▫-C chains in a chemical formula of B11 C3 , is determined by state-of-the-art aberration-corrected scanning TEM. The in situ TEM observations reveal that cracking is preferentially initiated at the twin boundaries (TBs) in B4 C under both indentation and tension loading. The cracks then propagate along the TBs, thus resulting in the fracture of B4 C. These results are consistent with the theoretical calculations that show that TBs have a softening effect on B4 C with amorphous bands preferentially nucleated at the TBs. These findings elucidate the atomic arrangement and the role of planar defects in the failure of B4 C. Furthermore, they can guide the design of advanced superhard materials via planar defect control.

12.
Sci Total Environ ; 857(Pt 1): 159325, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216044

RESUMO

Climate change is one of the most concerning topics in the Anthropocene. Increasing sea water temperature will trigger a series of ecological consequences, altering the various functions and services that marine ecosystems provide for humans. Fisheries, specifically, will likely face the most direct impact. China provides unparalleled catches with enormous and intensive fishing effort, and China Seas are suffering from significantly increasing water temperature. However, uncertainties in the impacts of climate change on fishing species and fisheries in the China Seas present challenges for the formulation of coping and adapting strategies. Here, we employed a climate risk assessment framework to evaluate the climate risks of fishing species and fisheries of various provinces in China in the past decade, aiming to benefit the development and prioritization of appropriate adaptation options to climate change. Results show that considering the water temperature in the 2010s, 20 % of fishing species in the China Seas have one-fourth of their habitats unsuitable, and the situation will become worse with future warming scenarios in the 2050s when nearly half of species will have at least one-fourth of their habitats no longer suitable. Integrating hazard, exposure and vulnerability, climate risks to fisheries feature heterogeneity among provinces. Climate risks to fisheries of northern provinces are characterized by low hazard and high exposure, while the southern counterparts are largely determined by high hazard and low exposure. Climate change is threatening fishing species and remarkably altering fishery patterns in China Seas. Shifting fishing targets, increasing fishing efficiency, raising catch diversity, and updating fishery-related industries would be effective steps to help fisheries adapt to climate change, and adaptation strategies need to be tailored considering local realities.


Assuntos
Ecossistema , Pesqueiros , Humanos , Animais , Caça , Oceanos e Mares , Mudança Climática , Água , Peixes
13.
Nat Mater ; 22(1): 42-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522415

RESUMO

Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperature-pressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53 GPa, a compressive strength of up to ~54 GPa and an electrical conductivity of 670-1,240 S m-1 at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon.

14.
Nat Commun ; 13(1): 6938, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376300

RESUMO

Valence fluctuation of interacting electrons plays a crucial role in emergent quantum phenomena in correlated electron systems. The theoretical rationale is that this effect can drive a band insulator into a superconductor through charge redistribution around the Fermi level. However, the root cause of such a fluctuating leap in the ionic valency remains elusive. Here, we demonstrate a valence-skipping-driven insulator-to-superconductor transition and realize quasi-two-dimensional superconductivity in a van der Waals insulator GeP under pressure. This is shown to result from valence skipping of the Ge cation, altering its average valency from 3+ to 4+, turning GeP from a layered compound to a three-dimensional covalent system with superconducting critical temperature reaching its maximum of 10 K. Such a valence-skipping-induced superconductivity with a quasi-two-dimensional nature in thin samples, showing a Berezinskii-Kosterlitz-Thouless-like character, is further confirmed by angle-dependent upper-critical-field measurements. These findings provide a model system to examine competing order parameters in valence-skipping systems.

15.
Sci Rep ; 12(1): 13585, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945255

RESUMO

The Pacific saury (Cololabis saira) is one of the most commercially important pelagic fishes in Asia-Pacific countries. The oceanographic environment, especially the Oyashio Current, significantly affects the distribution of Pacific saury, and may lead to variations in their migration route and the formation of fishing grounds in Japanese coastal region and the high seas. In this study, six oceanographic factors, sea surface temperature (SST), sea surface chlorophyll-a concentration (SSC), sea surface salinity (SSS), sea surface height (SSH), mixed layer depth (MLD), and eddy kinetic energy (EKE), were associated with the monthly catch per unit effort 1 (monthly CPUE1, ton/vessel) and the monthly CPUE2 (ton/day) of Pacific saury from Chinese fishing vessels during the optimal fishing periods (September-November) in 2014-2017. The gradient forest analysis showed that the performance of monthly CPUE1 was higher than monthly CPUE2 and SST was the most important oceanographic factor influencing monthly CPUE1, followed by EKE. The generalized additive model indicated that SST, SSH, and EKE negatively affected monthly CPUE1, whereas SSC, SSS, and MLD induced dome-shaped increases in monthly CPUE1. The distributions of fishing locations are likely to form along Offshore Oyashio current and meanders, especially in October and November. Synchronous trends in the relationship between the intrusion area of the Oyashio and relative abundance variation index suggest that an increase in the intrusion area of the Oyashio causes more Pacific saury to migrate to the Japanese coastal region, and vice versa. These findings extend our understanding of the effects of the oceanographic environment on Pacific saury.


Assuntos
Beloniformes , Caça , Animais , Oceanografia , Oceanos e Mares , Estações do Ano
16.
Nature ; 607(7919): 486-491, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794481

RESUMO

Understanding the direct transformation from graphite to diamond has been a long-standing challenge with great scientific and practical importance. Previously proposed transformation mechanisms1-3, based on traditional experimental observations that lacked atomistic resolution, cannot account for the complex nanostructures occurring at graphite-diamond interfaces during the transformation4,5. Here we report the identification of coherent graphite-diamond interfaces, which consist of four basic structural motifs, in partially transformed graphite samples recovered from static compression, using high-angle annular dark-field scanning transmission electron microscopy. These observations provide insight into possible pathways of the transformation. Theoretical calculations confirm that transformation through these coherent interfaces is energetically favoured compared with those through other paths previously proposed1-3. The graphite-to-diamond transformation is governed by the formation of nanoscale coherent interfaces (diamond nucleation), which, under static compression, advance to consume the remaining graphite (diamond growth). These results may also shed light on transformation mechanisms of other carbon materials and boron nitride under different synthetic conditions.

17.
Inorg Chem ; 61(25): 9631-9637, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35696435

RESUMO

Multiferroic materials with the cross-coupling of magnetic and ferroelectric orders provide a new platform for physics study and designing novel electronic devices. However, the weak coupling strength of ferroelectricity and magnetism is the main obstacle for potential applications. The recent research focuses on enhancing the coupling effect via synthesizing novel materials in a chemical route or tuning the multiferroicity in the physical way. Among them, pressure is an effective method to modify multiferroic materials, especially when the chemical doping has reached its tuning limit. In this work, we systemically studied the multiferroic properties in a hydrogen-bonded metal-organic framework (MOF) [(CH3)2NH2]Ni(HCOO)3 under high pressure. X-ray diffraction and Raman scattering reveal that a structural phase transition occurs in a pressure region of 6-9 GPa, and the crystal structure is greatly modified by pressure. With the ac magnetic susceptibility, pyroelectric current, and dielectric constant measurements, we obtain the multiferroic property evolution under high pressure and create a temperature-pressure phase diagram. Our study demonstrates that the pressure can modify the magnetic superexchange interaction and hydrogen bonding simultaneously in these perovskite-like MOFs. The multiferroic phase region has been expanded to higher temperature due to the pressure-enhanced spin-phonon coupling effect.

18.
Nano Lett ; 22(12): 4979-4984, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639704

RESUMO

The traditional hardness-toughness tradeoff poses a substantial challenge for the development of superhard materials. Due to strong covalent bonds and intrinsic brittleness, the full advantage of microstructure engineering for enhanced mechanical properties requires further exploration in superhard materials. Here heterogeneous diamond-cBN composites were synthesized from a carefully prepared precursor (hBN microflakes uniformly wrapped by onion carbon nanoparticles) through phase transitions under high pressure and high temperature. The synthesized composites inherit the architecture of the precursors: cBN regions with an anisotropic profile that spans several micrometers laterally and several hundred nanometers in thickness are embedded in a nanograined diamond matrix with high-density nanotwins. A significantly high fracture toughness of 16.9 ± 0.8 MPa m1/2 is achieved, far beyond those of single-crystal diamond and cBN, without sacrificing hardness. A detailed TEM analysis revealed multiple toughening mechanisms closely related to the microstructure. This work sheds light on microstructure engineering in superhard materials for excellent mechanical properties.

19.
Adv Mater ; 34(27): e2201209, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35448916

RESUMO

The technological appeal of van der Waals ferromagnetic materials is the ability to control magnetism under external fields with desired thickness toward novel spintronic applications. For practically useful devices, ferromagnetism above room temperature or tunable magnetic anisotropy is highly demanded but remains challenging. To date, only a few layered materials exhibit unambiguous ferromagnetic ordering at room temperature via gating techniques or interface engineering. Here, it is demonstrated that the magnetic anisotropy control and dramatic modulation of Curie temperature (Tc ) up to 400 K are realized in layered Fe5 GeTe2 via the high-pressure diamond-anvil-cell technique. Magnetic phases manifesting with in-plane anisotropic, out-of-plane anisotropic and nearly isotropic magnetic states can be tuned in a controllable way, depicted by the phase diagram with a maximum Tc up to 360 K. Remarkably, the Tc can be gradually enhanced to above 400 K owing to the Fermi surface evolution during a pressure loading-deloading process. Such an observation sheds light on the understanding and control of emergent magnetic states in practical spintronic applications.

20.
Small ; 18(22): e2201212, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35396819

RESUMO

Superhard materials other than diamond and cubic boron nitride have been actively pursued in the past two decades. Cubic silicon carbide, i.e., ß-SiC, is a well-known hard material with typical hardness <30 GPa. Although nanostructuring has been proven to be effective in enhancing materials' hardness by virtue of the Hall-Petch effect, it remains a significant challenge to improve hardness of ß-SiC beyond the superhard threshold of 40 GPa. Here, the fabrication of nanocrystalline ß-SiC bulks is reported by sintering nanoparticles under high pressure and high temperature. These ß-SiC bulks are densely sintered with average grain sizes down to 10 nm depending on the sintering conditions, and the Vickers hardness increases with decreasing grain size following the Hall-Petch relation. Particularly, the bulk sintered under 25 GPa and 1400 °C shows an average grain size of 10 nm and an asymptotic Vickers hardness of 41.5 GPa. Boosting the hardness of ß-SiC over the superhard threshold signifies an important progress in superhard materials research. A broader family of superhard materials is in sight through successful implementation of nanostructuring in other hard materials such as BP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...